

2013

Mr.Arvind Yadav

www.objectzoom.com

17-Jul-13

Advance Java (Swing)

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

2 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

1

1.1 What Is Swing?
If you poke around the Java home page (http://java.sun.com/), you'll find Swing advertised as a set
of customizable graphical components whose look-and-feel can be dictated at runtime. In reality,
however, Swing is much more than this. Swing is the next-generation GUI toolkit that Sun
Microsystems is developing to enable enterprise development in Java. By enterprise development,
we mean that programmers can use Swing to create large-scale Java applications with a wide array
of powerful components. In addition, you can easily extend or modify these components to control
their appearance and behavior.

Swing is not an acronym. The name represents the collaborative choice of its designers when the
project was kicked off in late 1996. Swing is actually part of a larger family of Java products known
as the Java Foundation Classes (JFC), which incorporate many of the features of Netscape's
Internet Foundation Classes (IFC), as well as design aspects from IBM's Taligent division and
Lighthouse Design. Swing has been in active development since the beta period of the Java
Development Kit (JDK)1.1, circa spring of 1997. The Swing APIs entered beta in the latter half of
1997 and their initial release was in March of 1998. When released, the Swing 1.0 libraries
contained nearly 250 classes and 80 interfaces

Although Swing was developed separately from the core Java Development Kit, it does require at
least JDK 1.1.5 to run. Swing builds on the event model introduced in the 1.1 series of JDKs; you
cannot use the Swing libraries with the older JDK 1.0.2. In addition, you must have a Java 1.1-
enabled browser to support Swing applets.

1.1.1 What Are the Java Foundation Classes (JFC)?
The Java Foundation Classes (JFC) are a suite of libraries designed to assist programmers in
creating enterprise applications with Java. The Swing API is only one of five libraries that make up
the JFC. The Java Foundation Classes also consist of the Abstract Window Toolkit (AWT), the
Accessibility API, the 2D API, and enhanced support for drag-and-drop capabilities. While the
Swing API is the primary focus of this book, here is a brief introduction to the other elements in
the JFC:

AWT
The Abstract Window Toolkit is the basic GUI toolkit shipped with all versions of the Java
Development Kit. While Swing does not reuse any of the older AWT components, it does
build off of the lightweight component facilities introduced in AWT 1.1.

Accessibility
The accessibility package provides assistance to users who have trouble with traditional user
interfaces. Accessibility tools can be used in conjunction with devices such as audible text
readers or braille keyboards to allow direct access to the Swing components. Accessibility is
split into two parts: the Accessibility API, which is shipped with the Swing distribution, and
the Accessibility Utilities API, distributed separately.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

3 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

2D API
The 2D API contains classes for implementing various painting styles, complex shapes, fonts,
and colors. This Java package is loosely based on APIs that were licensed from IBM's

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

4 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Taligent division. The 2D API classes are not part of Swing, so they will not be covered in
this book.

Drag and Drop
Drag and drop is one of the more common metaphors used in graphical interfaces today. The
user is allowed to click and "hold" a GUI object, moving it to another window or frame in
the desktop with predictable results. The Drag and Drop API allows users to implement
droppable elements that transfer information between Java applications and native
applications. Drag and Drop is also not part of Swing, so we will not discuss it here.

Figure 1.1 enumerates the various components of the Java Foundation Classes. Because part of the
Accessibility API is shipped with the Swing distribution, we show it overlapping Swing.

Figure 1.1. The five APIs of the Java Foundation Classes

1.1.2 Is Swing a Replacement for AWT?
No. Swing is actually built on top of the core 1.1 and 1.2 AWT libraries. Because Swing does not
contain any platform-specific (native) code, you can deploy the Swing distribution on any platform
that implements the Java 1.1.5 virtual machine or above. In fact, if you have JDK 1.2 on your
platform, then the Swing classes will already be available and there's nothing further to download.
If you do not have JDK 1.2, you can download the entire set of Swing libraries as a set of Java
Archive (JAR) files from the Swing home page: http://java.sun.com/products/jfc . In either case, it
is generally a good idea to visit this URL for any extra packages or look-and-feels that may be
distributed separately from the core Swing libraries.

Figure 1.2 shows the relationship between Swing, AWT, and the Java Development Kit in both the
1.1 and 1.2 JDKs. In JDK 1.1, the Swing classes must be downloaded separately and included as an
archive file on the classpath (swingall.jar).[1] JDK 1.2 comes with a Swing distribution, although
therelationship between Swing and the rest of the JDK has shifted during the beta process.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

5 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Nevertheless, if you have installed JDK 1.2, you should have Swing.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

6 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Figure 1.2. Relationships between Swing, AWT, and the JDK in the 1.1 and 1.2 JDKs

Swing contains nearly twice the number of graphical components as its immediate predecessor,
AWT 1.1. Many are components that have been scribbled on programmer wish-lists since Java first
debuted—including tables, trees, internal frames, and a plethora of advanced text components. In
addition, Swing contains many design advances over AWT. For example, Swing introduces a new
Action class that makes it easier to coordinate GUI components with the functionality they
perform. You'll also find that a much cleaner design prevails throughout Swing; this cuts down on
the number of unexpected surprises that you're likely to face while coding

Swing depends extensively on the event handling mechanism of AWT 1.1, although it does not
define a comparatively large amount of events for itself. Each Swing component also contains a
variable number of exportable properties. This combination of properties and events in the design
was no accident. Each of the Swing components, like the AWT 1.1 components before them,
adhere to the popular JavaBeans specification. As you might have guessed, this means that you
can import all of the Swing components into various GUI-builder tools—useful for powerful
visual programming.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

7 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Major difference between swing and AWT component

Sr.No. AWT swing

1 Heavy weight Light weight

2 Native component Pure java component

3 Native look and feel Better look and feel

4 Does not have a complex component Has additional components like JTree ,

 JTable ,JProgressBar ,JSlider , etc

5 Applet can not have menu JApplet have menu

6 List has scrollbar JList does not support scrolling but this can

 be done using scrollPane

7 Components can be added directly on While adding components on Frame or

 the Frame or window window , they have to be added on it’s

 content pane.

8 Does not have slidePane or TabbedPane Has alidePane or TabbedPane

9 Does not support MDI window MDI can be achieved using InternalFrame

 Object

10 Menu item cannot have image or radio Menu item can have images or radio buttons

 button or checkboxes. or checkboxes.

11 They do not have JMV All swng components have JMV

 (java Model Voewport)

12 Default layout is flowLayout Default layout is BorderLayout

1.2 Swing Packages and Classes

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

8 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

1.2.1 Swing Packages

javax.swing
Contains the core Swing components, including most of the model interfaces and support

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

9 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

classes.

1.2.2 Class Hierarchy

Figure 1.4 shows a detailed overview of the Swing class hierarchy as it appears in the 1.2 JDK.
At first glance, the class hierarchy looks very similar to AWT. Each Swing component with an
AWT equivalent shares the same name, except that the Swing class is preceded by a capital "J".
In most cases, if a Swing component supersedes an AWT component, it can be used as a drop-in
replacement.

Figure 1.4. The Swing component hierarchy

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

10 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

SWING COMPONENT

Swing is a set of classes that provides more powerful and flexible components than are
possible with the AWT.
Swing provide a set of “lightweight” (all-java language) component that to the maxim degree
possible, Work the same on all platforms.
The term lightweight is used to describe such elements. The swing component class that are used to shown
here .

Class Description
AbstractButton Abstract superclass for Swing buttons.

ButtonGroup Encapsulates a mutually exclusive set of buttons.

ImageIcon Encapsulates an icon.

JApplet The Swing version of Applet.

JButton The Swing push button class.

JCheckBox The Swing check box class.

JComboBox Encapsulates a combo box (an combination of a
drop-down list and text field).

JLabel The Swing version of a label.

JRadioButton The Swing version of a radio button.

JScrollPane Encapsulates a scrollable window.

JTabbedPane Encapsulates a tabbed window.

JTable Encapsulates a table-based control.

JTextField The Swing version of a text field.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

11 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JTree Encapsulates a tree-based control

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

12 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

THE JCOMPONENT CLASS

java.lang.Object

java.awt.Component
java.awt.Container

javax.swing.JComponet

With the exception of top-level containers, all Swing components whose names begin
with "J" descend from theJComponent class. For example, JPanel, JScrollPane,JButton,
and JTable all inherit from JComponent. However, JFrame and JDialog don't because they
implement top-level containers.

The JComponent class extends the Container class, which itself extends Component.
The Component class includes everything from providing layout hints to supporting
painting and events. The Container class has support for adding components to the

container and laying them out. This section's API tables summarize the most often used
methods of Component and Container, as well as ofJComponent.

JComponent Features

The JComponent class provides the following functionality to its descendants:

 Tool tips

 Painting and borders

 Application-wide pluggable look and feel

 Custom properties

 Support for layout

 Support for accessibility

 Support for drag and drop

 Double buffering

 Key bindings

Tool tips
By specifying a string with the setToolTipTextmethod, you can provide help to
users of a component. When the cursor pauses over the component, the
specified string is displayed in a small window that appears near the component

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

13 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Painting and borders

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

14 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The setBorder method allows you to specify the border that a component displays
around its edges. To paint the inside of a component, override
thepaintComponent method.

Application-wide pluggable look and feel

Behind the scenes, each JComponent object has a

corresponding ComponentUI object that performs all the drawing, event handling,
size determination, and so on for that JComponent. Exactly
whichComponentUI object is used depends on the current look and feel, which you
can set using theUIManager.setLookAndFeel method

Custom properties

You can associate one or more properties (name/object pairs) with

any JComponent. For example, a layout manager might use properties to associate
a constraints object with each JComponentit manages. You put and get properties
using theputClientProperty and getClientPropertymethods.

Support for layout

Although the Component class provides layout hint methods such

as getPreferredSize andgetAlignmentX, it doesn't provide any way to set these
layout hints, short of creating a subclass and overriding the methods. To give you
another way to set layout hints, the JComponent class adds setter methods —

setMinimumSize, setMaximumSize,setAlignmentX, and setAlignmentY
Support for accessibility

The JComponent class provides API and basic functionality to help assistive
technologies such as screen readers get information from Swing components.

Support for drag and drop
The JComponent class provides API to set a component's transfer handler, which is
the basis for Swing's drag and drop support.

Double buffering

Double buffering smooths on-screen painting.
Key bindings

This feature makes components react when the user presses a key on the
keyboard. For example, in many look and feels when a button has the focus,
typing the Space key is equivalent to a mouse click on the button. The look and
feel automatically sets up the bindings between pressing and releasing the Space
key and the resulting effects on the button.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

15 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

USING TOP-LEVEL CONTAINERS

1) JApplet

java.lang.Object

java.awt.Component
java.awt.Container

java.awt.Panel
java.applet.Applet

javax.swing.JApplt

An extended version of java.applet.Applet that adds support for the JFC/Swing
component architecture. The JApplet class is slightly incompatible with
java.applet.Applet. JApplet contains a JRootPane as it's only child.
The contentPane should be the parent of any children of the JApplet.

to add the child to the JApplet's contentPane we use the getContentPane()
method and add the components to the contentpane.

The same is true for setting LayoutManagers, removing components, listing
children, etc. All these methods should normally be sent to the contentPane()
instead of the JApplet itself. The contentPane() will always be non-null.
Attempting to set it to null will cause the JApplet to throw an exception. The
default contentPane() will have a BorderLayout manager set on it.

Constructor

JApplet()

Creates a swing applet instance.

Methods

Container

 getContentPane()

Returns the contentPane object for this applet.

void setJMenuBar(JMenuBar menuBar)
Sets the menubar for this applet.

void setLayout(LayoutManager manager)

By default the layout of this component may not be set,

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

16 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

the layout of its contentPane should be set instead.

void remove(Component comp)
Removes the specified component from this container.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

17 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Example: 01

import javax.swing.*;
import java.awt.*;

/*<applet code="myapplet.class" height=200
width=300></applet>*/ public class myapplet extends JApplet

{

public void init()
{

JButton btn1,btn2,btn3;
JLabel lbl;

Container cp=getContentPane();

cp.setBackground(Color.white);
cp.setLayout(new FlowLayout());

btn1=new JButton("Yes");
btn2=new JButton("NO");

btn3=new JButton("OK");
lbl=new JLabel("My Label");

cp.add(lbl);
cp.add(btn1);

cp.add(btn2);
cp.add(btn3);
}

}

OUTPUT

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

18 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Example : 02

import java.awt.*;
import javax.swing.*;

/*<applet code="myapplet1.class" width=550 height=500></applet>*/

public class myapplet1 extends JApplet

{

public void init()

{

Container cp=getContentPane();
cp.setLayout(new FlowLayout());
cp.setBackground(Color.white);
ImageIcon ii=new ImageIcon("sound.gif");

JLabel lbl=new JLabel("my image!!!",ii,JLabel.CENTER);
cp.add(lbl);

}

}

OUTPUT

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

19 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Example : 03
import java.awt.*;
import javax.swing.*;
/*
<applet code="myapp.class" width=300
height=50> </applet>

*/

public class myapp extends JApplet

{

JTextField jtf;
JLabel lblname,lblcrs;
JComboBox jc; public
void init()
{

Container cp = getContentPane();
cp.setLayout(new FlowLayout());

lblname =new JLabel("Enter Name");
lblcrs =new JLabel("select course");
jtf = new JTextField(14);
jc = new JComboBox();

jc.addItem("java");

jc.addItem("SQL");

jc.addItem("c#");

jc.addItem("PHP");

cp.add(lblname);

cp.add(jtf);

cp.add(lblcrs);

cp.add(jc);

}

}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

20 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

2) JDialog

java.lang.Object

java.awt.Component
java.awt.Container

java.awt.Window
java.awt.Dialog

javax.swing.JDialog

The JDialog is the main class for creating a dialog

window. You can use this class to create a custom

dialog, or invoke the many class methods in JOptionPane

to create a variety of standard dialogs.

The JDialog component contains a JRootPane as its only

child. The contentPane should be the parent of any

children of the JDialog.

As a conveniance add andvariants, remove and

setLayouthave been overridden to forward to

the contentPane as necessary

You can add an element in dialog as follows:

dialog.add(child);

Constructor Summary

JDialog()

Creates a non-modal dialog without a title and without a specified Frame owner.

JDialog(Dialog owner)

Creates a non-modal dialog without a title with the specified Dialog as its owner.

JDialog(Dialog owner, boolean modal)

Creates a modal or non-modal dialog without a title and with the specified
owner dialog.

JDialog(Dialog owner, String title)

Creates a non-modal dialog with the specified title and with the specified
owner dialog.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

21 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JDialog(Dialog owner, String title, boolean modal)

Creates a modal or non-modal dialog with the specified title and the
specified owner frame.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

22 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JDialog(Dialog owner, String title, boolean modal, GraphicsConfiguration gc)

Creates a modal or non-modal dialog with the specified title, owner Dialog,
andGraphicsConfiguration.

JDialog(Frame owner)

Creates a non-modal dialog without a title with the specified Frame as its owner.

JDialog(Frame owner, boolean modal)

Creates a modal or non-modal dialog without a title and with the
specified owner Frame.

JDialog(Frame owner, String title)

Creates a non-modal dialog with the specified title and with the specified
owner frame.

JDialog(Frame owner, String title, boolean modal)

Creates a modal or non-modal dialog with the specified title and the
specified owner Frame.

Method Summary

protected addImpl(Component comp, Object constraints, int index)

void
Adds the specified child Component.

void remove(Component comp)

 Removes the specified component from the container.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

23 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

3) JWindow

java.lang.Object

java.awt.Component
java.awt.Container

java.awt.Window

javax.swing.JWindw

A JWindow is a container that can be displayed anywhere on the user's desktop. It does
not have the title bar, window-management buttons, or other trimmings associated
with a JFrame, but it is still a "first-class citizen" of the user's desktop, and can exist
anywhere on it.

The JWindow component contains a JRootPane as its only child. The contentPane should
be the parent of any children of the JWindow.

You can add an element in dialog as follows:

window.add(child);

However, using JWindow you would code:

window.getContentPane().add(child);

The same is true of setting LayoutManagers, removing components, listing children, etc.
All these methods should normally be sent to the contentPane instead of
the JWindow itself. The contentPanewill always be non-null. Attempting to set it

to null will cause the JWindow to throw an exception. The default contentPane will have
a BorderLayout manager set on it.

Constructor Summary

JWindow()

Creates a window with no specified owner.

JWindow(Frame owner)

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

24 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Creates a window with the specified owner frame.

JWindow(GraphicsConfiguration gc)

Creates a window with the specified GraphicsConfiguration of a screen device.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

25 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JWindow(Window owner)

Creates a window with the specified owner window.

JWindow(Window owner, GraphicsConfiguration gc)

Creates a window with the specified owner window
and GraphicsConfiguration of a screen device.

Method Summary

Container getContentPane()

 Returns the Container which is the contentPane for this window.
void setLayout(LayoutManager manager)

 By default the layout of this component may not be set, the
 layout of its contentPane should be set instead.

void update(Graphics g)
 Calls paint(g).

protected windowInit()
void Called by the constructors to init the JWindow properly.

4) JFrame

java.lang.Object

java.awt.Component
java.awt.Container

java.awt.Window
java.awt.Frame

javax.swing.JFrae

A Frame is a top-level window with a title and a border.

JFrame is a subclass of JWindow that has a border and can hold a menubar.You can
drag a form around on the screen and resize it, using the ordinary controls for your
windowing environment.

All other swing components and containers must be held, at Same level, inside a frame.

JFrame are the only components that can be displayed without being added or attached to
another Container.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

26 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

After creating a JFrame, you can call
setVisible()method To display it.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

27 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Creating a JFrame Window:

Step1: Construct an object of the JFrame
class Step2: Set the size of the JFrame.

Step3: Set the title of the JFrame to appear in the title (Title bar will be blank if no title

is set).

Step4: Set the default close operation. When the user

clicks the Close button, the program stops running.
Step5: Make the JFrame visible.

Constructors

JFrame()

Constructs a new frame that is initially invisible.

JFrame(GraphicsConfiguration gc)

Creates a Frame in the specified GraphicsConfiguration of a screen device and a
blank title.

JFrame(String title)

Creates a new, initially invisible Frame with the specified title.

JFrame(String title, GraphicsConfiguration gc)

Creates a JFrame with the specified title and the
specified GraphicsConfiguration of a screen device.

Methods

void

 setDefaultCloseOperation(int operation)

Sets the operation that will happen by default when the user initiates
a "close" on this frame.

void setLayout(LayoutManager manager)

By default the layout of this component may not be set,
the layout of itscontentPane should be set instead.

void setJMenuBar(JMenuBar menubar)

Sets the menubar for this frame.

void remove(Component comp)

Removes the specified component from this container.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

28 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

void pack()

Causes this Window to be sized to fit the preferred size

and layouts of its subcomponents.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

29 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

public void setDefaultCloseOperation(int operation)

Sets the operation that will happen by default when the user initiates a
"close" on this frame. You must specify one of the following choices:

 DO_NOTHING_ON_CLOSE (defined in WindowConstants):
Don't do anything; require the program to handle the operation in

the windowClosing method of a
registeredWindowListener object.

 HIDE_ON_CLOSE (defined in WindowConstants):
Automatically hide the frame after invoking any

registered WindowListener objects.

 DISPOSE_ON_CLOSE (defined in WindowConstants):
Automatically hide and dispose the frame after invoking any
registered WindowListener objects.

 EXIT_ON_CLOSE (defined in JFrame): Exit the application
using the System exit method. Use this only in applications.

The value is set to HIDE_ON_CLOSE by default.

Parameters:

operation - the operation which should be performed when the user
closes the frame

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

30 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

How to create a frame in Java Swing Application

The frame in java works like the main window where your components (controls) are added
to develop an application. In the Java Swing, top-level windows are represented by the
JFrame class. Java supports the look and feel and decoration for the frame.

For creating java standalone application you must provide GUI for a user. The most common
way of creating a frame is, using single argument constructor of the JFrame class. The argument
of the constructor is the title of the window or frame. Other user interface are added by
constructing and adding it to the container one by one. The frame initially are not visible and to
make it visible the setVisible(true) function is called passing the boolean value true. The close
button of the frame by default performs the hide operation for the JFrame. In this example we
have changed this behavior to window close operation by setting the setDefaultCloseOperation()
to EXIT_ON_CLOSE value.

setSize (400, 400):

Above method sets the size of the frame or window to width (400) and height (400) pixels.

setVisible(true):

Above method makes the window visible.

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE):
Above code sets the operation of close operation to Exit the application using the System exit
method.

Example 04:

import javax.swing.*;

public class Swing_Create_Frame{
public static void main(String[] args){

JFrame frame = new JFrame("arvind@objectzoom.com");
frame.setSize(400, 400);

frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

31 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

how to make a frame non resizable. It means, disabling the maximize button of the frame.

The setResizable() method has been used to make the frame resizable or not. If you pass the
boolean value false to the setResizable() method then the frame will be non-resizable
otherwise frame will be resizable. The setResizable() is the method of the JFrame class which
takes a boolean valued argument (true or false).

Screen shot for the result of the program:

Example 05 :

import javax.swing.*;

public class SwingFrameNonResizable

{

public static void main(String[] args)

{

JFrame frame = new JFrame("Non Resizable Frame");
frame.setResizable(false);

frame.setSize(400, 400);
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

OUTPUT:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

32 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

How to set an icon for the frame in Java Swing.

This program helps us to set the icon (image) on the title bar of the frame. When you open
frame or window the icon situated on the title bar is seen on the taskbar also. For this purposes,
various methods as follows has been used:

frame.setIconImage(Toolkit.getDefaultToolkit().getImage("icon_confused.gif"));
Above method sets the icon for the frame or window after getting the image using the Image
class method named getImage().

frame.getDefaultToolkit():

This is the method of the Toolkit class which gets the default toolkit.

Example 06:

import javax.swing.*;
import java.awt.*;

public class SettingIconFrame

{
public static void main(String[] args)

{

JFrame frame = new JFrame("Setting an Icon for a frame");

frame.setIconImage(Toolkit.getDefaultToolkit().getImage("rose.gif"));

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setSize(400,400);
frame.setVisible(true);
}

}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

33 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

2

USING INTERMEDIATE SWING CONTAINER S

1) Class JPanel

java.lang.Object
|
+--java.awt.Component

|
+--java.awt.Container

|
+--javax.swing.JComponent

|
+--javax.swing.JPanel

The JPanel class provides general-purpose containers for lightweight components. By
default, panels do not add colors to anything except their own background; however, you
can easily add borders to them and otherwise customize their painting.

In many types of look and feel, panels are opaque by default. Opaque panels work well
as content panes and can help with painting efficiently, as described in Using Top-Level
Containers. You can change a panel's transparency by invoking the setOpaque method

Adding Components

When you add components to a panel, you use the addmethod. Exactly which arguments
you specify to the addmethod depend on which layout manager the panel uses. When the
layout manager is FlowLayout, BoxLayout,GridLayout, or SpringLayout, you will typically

use the one-argument add method, like this:

aFlowPanel.add(aComponent);
aFlowPanel.add(anotherComponent);

When the layout manager is BorderLayout, you need to provide an argument specifying
the added component's position within the panel. For example:

aBorderPanel.add(aComponent, BorderLayout.CENTER);
aBorderPanel.add(anotherComponent, BorderLayout.SOUTH);

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

34 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Constructor Purpose

Creates a panel. TheLayoutManager parameter provides a
JPanel()

JPanel(LayoutManager) layout manager for the new panel. By default, a panel uses a
FlowLayout to lay out its components.

Method Purpose

 Adds the specified component to the panel.

 When present, the intparameter is the index of

 the component within the container. By

void add(Component) default, the first component added is at index

void add(Component, int) 0, the second is at index 1, and so on.

void add(Component, Object) TheObject parameter is layout manager

void add(Component, Object, int) dependent and typically provides information

void add(String, Component) to the layout manager regarding positioning

 and other layout constraints for the added

 component. The Stringparameter is similar to

 theObject parameter.

void remove(Component)

void remove(int) Removes the specified component(s).

void removeAll()

 Sets or gets the layout manager for this panel.

void setLayout(LayoutManager) The layout manager is responsible for

LayoutManager getLayout() positioning the panel's components within the

 panel's bounds according to some philosophy.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

35 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

2) Class JScrollPane

java.lang.Object

java.awt.Component
java.awt.Container

javax.swing.JComponent

javax.swing.JScrollPane

A JScrollPane provides a scrollable view of a component.

A JScrollPane manages a viewport, optional vertical and horizontal scroll bars, and optional
row and column heading viewports.

The JViewport provides a window, or "viewport" onto a data source -- for example, a
text file. That data source is the "scrollable client" (aka data model) displayed by
theJViewport view. A JScrollPane basically consists ofJScrollBars, a JViewport, and the

wiring between them, as shown in the diagram at right.

In addition to the scroll bars and viewport, a JScrollPanecan have a column header and a
row header. Each of these is a JViewport object that you specify withsetRowHeaderView,
and setColumnHeaderView.

To add a border around the main scrollPane.getViewport().setBackground()

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

36 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

viewport, you can use setViewportBorder. A common operation to want to do is to set
the background color that will be used if the main viewport view is smaller than the
viewport, This can be accomplished by setting the
background color of the viewport, via .

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

37 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Constructor Purpose

JScrollPane() Create a scroll pane. The Componentparameter, when

JScrollPane(Component) present, sets the scroll pane's client. The

JScrollPane(int, int) two intparameters, when present, set the vertical

JScrollPane(Component, int, int) and horizontal scroll bar policies (respectively).

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

38 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Method:

void

setVerticalScrollBarPolicy(int)

int getVerticalScrollBarPolicy()

Set or get the vertical scroll

policy.ScrollPaneConstants defines three values

for specifying this policy:

VERTICAL_SCROLLBAR_AS_NEEDED(the default),
VERTICAL_SCROLLBAR_ALWAYS, and
VERTICAL_SCROLLBAR_NEVER.

 Set or get the horizontal scroll policy.

 ScrollPaneConstants defines three values for

void setHorizontalScrollBarPolicy(int) specifying this policy:

int getHorizontalScrollBarPolicy() HORIZONTAL_SCROLLBAR_AS_NEEDED(the default),

 HORIZONTAL_SCROLLBAR_ALWAYS,

 and HORIZONTAL_SCROLLBAR_NEVER.

void

setColumnHeaderView(Component) Set the column or row header for the scroll pane.
void

setRowHeaderView(Component)

 Set or get the corner specified. The intparameter

 specifies which corner and must be one of the

 following constants defined in

void setCorner(String, Component) ScrollPaneConstants:

Component getCorner(String) UPPER_LEFT_CORNER,

 UPPER_RIGHT_CORNER, and

 LOWER_LEFT_CORNER,

 LOWER_RIGHT_CORNER

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

39 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

3) Split Panes

A JSplitPane displays two components, either side by side or one on top of the other. By
dragging the divider that appears between the components, the user can specify how
much of the split pane's total area goes to each component. You can divide screen space
among three or more components by putting split panes inside of split panes, as
described in Nesting Split Panes.

Instead of adding the components of interest directly to a split pane, you often put
each component into a scroll pane. You then put the scroll panes into the split pane.
This allows the user to view any part of a component of interest, without requiring the
component to take up a lot of screen space or adapt to displaying itself in varying
amounts of screen space.

Here's a picture of an application that uses a split pane to display a list and an image side
by side:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

40 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Constructor Purpose

 Create a split pane. When present, the intparameter

JSplitPane() indicates the split pane's orientation,

JSplitPane(int) eitherHORIZONTAL_SPLIT(the default) orVERTICAL_SPLI

JSplitPane(int, boolean) The boolean parameter, when present, sets whether

JSplitPane(int, Component, the components continually repaint as the user drags

Component) the split pane. If left unspecified, this option

JSplitPane(int, boolean, Compone (calledcontinuous layout) is turned off.

Component) TheComponentparameters set the initial left and right,

 top and bottom components, respectively.

Method :

void setOrientation(int)

int getOrientation()

Set or get the split pane's orientation. Use either
HORIZONTAL_SPLIT or VERTICAL_SPLIT defined in
JSplitPane.

If left unspecified, the split pane will be
horizontall split.

void setDividerSize(int)

int getDividerSize()

void setContinuousLayout(boolean)
boolean isContinuousLayout()

Set or get the size of the divider in pixels.

Set or get whether the split pane's components ar

continually layed out and painted while the user is

dragging the divider. By default, continuous

layout turned off.

void

setOneTouchExpandable(boolean)

boolean isOneTouchExpandable()

void add(Component)

Set or get whether the split pane displays a

control on the divider to expand/collapse the

divider. The default depends on the look and feel.

In the Java look and feel, it is off by default.

Add the component to the split pane. You can add

only two components to a split pane. The first

component added is the top/left component. The

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

41 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

second component added is the

bottom/right component. Any

attempt to add more component

results in an exception.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

42 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

4)Tabbed Panes

A tabbed pane is a component that appears as a group of folders in a file cabinet. Each
folder has a title. When a user selects a folder, its contents become visible. Only one of
the folders may be selected at a time. Tabbed panes are commonly used for setting
configuration options.

Tabbed panes are encapsulated by the JTabbedPane class, which extends
JComponent. We will use its default constructor.

The general procedure to use a tabbed pane in an applet is outlined here:
1. Create a JTabbedPane object.
2. Call addTab() to add a tab to the pane. (The arguments to this method define

the title of the tab and the component it contains.)
3. Repeat step 2 for each tab.
4. Add the tabbed pane to the content pane of the applet.

Constructor

JTabbedPane tp = new JTabbedPane(); // Tabs along the top edge.

JTabbedPane tp = new JTabbedPane(edge);

Where edge specifies which edge the tabs are on

 JTabbedPane.TOP (default)

 JTabbedPane.RIGHT

 JTabbedPane.BOTTOM

 JTabbedPane.LEFT

Constructor Purpose

 Creates a tabbed pane. The first optional argument specifies

JTabbedPane() where the tabs should appear. By default, the tabs appear at the

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

43 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JTabbedPane(int) top of the tabbed pane. You can specify these positions (defined

JTabbedPane(int, int) in the SwingConstantsinterface,

 which JTabbedPaneimplements): TOP, BOTTOM, LEFT,RIGHT. The

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

44 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

second optional argument specifies the tab layout policy.
You can specify one of these policies (defined

inJTabbedPane):WRAP_TAB_LAYOUT orSCROLL_TAB_LAYOUT.

Method

Component

 add(Component component)

Adds a component with a tab title defaulting to the name of
the component which is the result of calling component.getName.

Component

 add(Component component, int index)

Adds a component at the specified tab index with a tab title
defaulting to the name of the component.

addTab(String, Icon, Component, Adds a new tab to the tabbed pane. The first

String) argument specifies the text on the tab. The

optional icon argument specifies the tab's addTab(String, Icon, Component)

icon. The component argument specifies the component that the tabbed pane

should show

addTab(String, Component) when the tab is selected. The fourth argument, if

present, specifies the tool tip text for

the tab.

insertTab(String, Icon, Inserts a tab at the specified index, where
Component, String, int) the first tab is at index 0. The arguments

 are the same as for addTab.

void setSelectedIndex(int) Selects the tab that has the specified
void component or index. Selecting a tab has the
setSelectedComponent(Component) effect of displaying its associated

 component.

void setEnabledAt(int, boolean) Sets or gets the enabled state of the tab at
boolean isEnabledAt(int) the specified index.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

45 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Example :

5) Internal Frame

A lightweight object that provides many of the features of a native frame,
including dragging, closing, becoming an icon, resizing, title display, and support
for a menu bar.

If you do not add the internal frame to a container (usually a JDesktopPane), the
internal frame will not appear.

Generally, you add JInternalFrames to a JDesktopPane. The UI delegates the look-
and-feel-specific actions to the DesktopManager object maintained by
the JDesktopPane.

Here is a picture of an application that has two internal frames (one of which is
iconified) inside a regular frame:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

46 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Constructor Summary

JInternalFrame()

Creates a non-resizable, non-closable, non-maximizable,
non-iconifiable JInternalFramewith no title.

JInternalFrame(String title)

Creates a non-resizable, non-closable, non-maximizable,
non-iconifiable JInternalFramewith the specified title.

JInternalFrame(String title, boolean resizable)

Creates a non-closable, non-maximizable, non-iconifiable JInternalFrame with
the specified title and resizability.

JInternalFrame(String title, boolean resizable, boolean closable)

Creates a non-maximizable, non-iconifiable JInternalFrame with the specified
title, resizability, and closability.

JInternalFrame(String title, boolean resizable, boolean

closable, boolean maximizable)

Creates a non-iconifiable JInternalFrame with the specified title, resizability,
closability, and maximizability.

JInternalFrame(String title, boolean resizable, boolean

closable, boolean maximizable, boolean iconifiable)

Creates a JInternalFrame with the specified title, resizability, closability,
maximizability, and iconifiability.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

47 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Method Purpose

 Make the internal frame visible (iftrue) or invisible (if false).

void You should invoke setVisible(true)on

setVisible(boolean) each JInternalFrame before adding it to its container.

 (Inherited from Component).

void pack()
 Size the internal frame so that its components are at their

preferred sizes.

void setLocation(Point) Set the position of the internal frame. (Inherited

void setLocation(int,
fromComponent).

int)

void

setBounds(Rectangle) Explicitly set the size and location of the internal frame.

void setBounds(int, int, (Inherited from Component).

int, int)

void setSize(Dimension) Explicitly set the size of the internal frame. (Inherited

void setSize(int, int) fromComponent).

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

48 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

3

USING ATOMC COMPONENTS

1)JLabel

A display area for a short text string or an image, or both. A label does not react
to input events. As a result, it cannot get the keyboard focus. A label can,
however, display a keyboard alternative as a convenience for a nearby component
that has a keyboard alternative but can't display it.

A JLabel object can display either text, an image, or both. You can specify where
in the label's display area the label's contents are aligned by setting the vertical
and horizontal alignment. By default, labels are vertically centered in their
display area. Text-only labels are leading edge aligned, by default; image-only
labels are horizontally centered, by default.

Constructor Summary

JLabel()

Creates a JLabel instance with no image and with an empty string for the title.

JLabel(Icon image)

Creates a JLabel instance with the specified image.

JLabel(Icon image, int horizontalAlignment)

Creates a JLabel instance with the specified image and horizontal alignment.

JLabel(String text)

Creates a JLabel instance with the specified text.

JLabel(String text, Icon icon, int horizontalAlignment)

Creates a JLabel instance with the specified text, image, and horizontal
alignment.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

49 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JLabel(String text, int horizontalAlignment)

Creates a JLabel instance with the specified text and horizontal alignment.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

50 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Method Summary

void setIcon(Icon)
Icon getIcon()

void

setDisplayedMnemonic(char)

char getDisplayedMnemonic()

void

setDisplayedMnemonicIndex(int)

int

getDisplayedMnemonicIndex()

void setDisabledIcon(Icon)
Icon getDisabledIcon()

Sets or gets the image displayed by the label.

Sets or gets the letter that should look like a

keyboard alternative. This is helpful when a label

describes a component (such as a text field) that has

a keyboard alternative but cannot display it. If the

labelFor property is also set (using setLabelFor), then

when the user activates the mnemonic, the keyboard

focus is transferred to the component specified by

the labelFor property.

Sets or gets a hint as to which character in the text

should be decorated to represent the mnemonic.

This is useful when you have two instances of the

same character and wish to decorate the second

instance. For

example,setDisplayedMnemonicIndex(5)decorates

the character that is at position 5 (that is, the 6th

character in the text). Not all types of look and

feel may support this feature.

Sets or gets the image displayed by the label when it

is disabled. If you do not specify a disabled image,

then the look and feel creates one by manipulating

the default image

2) Class JButton

Mr.Arvind Yadav +91 – 829 1020 333

arvind@objectzoom.com

51 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JButton class provides the functionality of push button. JButton allows an icon
, a string , or both to be associated with the push button .

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

52 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Constructor Summary

JButton()

Creates a button with no set text or icon.

JButton(Action a)

Creates a button where properties are taken from the Action supplied.

JButton(Icon icon)

Creates a button with an icon.

JButton(String text)

Creates a button with text.

JButton(String text, Icon icon)

Creates a button with initial text and an icon.

Method

void setAction(Action)
Action getAction()

void setText(String)
String getText()

void setIcon(Icon)
Icon getIcon()

void

setDisabledIcon(Icon)

Icon getDisabledIcon()

void

setPressedIcon(Icon)

Icon getPressedIcon()

Set or get the button's properties according to values from
the Action instance.

Set or get the text displayed by the button. You can use HTML
formatting, as described in Using HTML in Swing Components.

Set or get the image displayed by the button when the
button isn't selected or pressed.

Set or get the image displayed by the button when it is

disabled. If you do not specify a disabled image, then the

look and feel creates one by manipulating the default image.

Set or get the image displayed by the button when it is
being pressed.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

53 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

3)JCheckBox

An implementation of a check box -- an item that can be selected or
deselected, and which displays its state to the user. By convention, any number
of check boxes in a group can be selected.

Constructor Summary

JCheckBox()

Creates an initially unselected check box button with no text, no icon.

JCheckBox(Action a)

Creates a check box where properties are taken from the Action supplied.

JCheckBox(Icon icon)

Creates an initially unselected check box with an icon.

JCheckBox(Icon icon, boolean selected)

Creates a check box with an icon and specifies whether or not it is initially selected.

JCheckBox(String text)

Creates an initially unselected check box with text.

JCheckBox(String text, boolean selected)

Creates a check box with text and specifies whether or not it is initially selected.

JCheckBox(String text, Icon icon)

Creates an initially unselected check box with the specified text and icon.

JCheckBox(String text, Icon icon, boolean selected)

Creates a check box with text and icon, and specifies whether or not it is initially selected.

Method:

Void setSelected (Boolean state)

Set the state of the button here , state is true if the checkbox should be
checked.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

54 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Check Boxes are created in swing by creating the instance of the
JCheckBox class using it's constructor which contains the string which has
to be shown beside the check box on the frame .

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

55 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

EXAMPLE

import javax.swing.*;

public class CreateCheckBox{
public static void main(String[] args){
JFrame frame = new JFrame("Check Box Frame");

JCheckBox chk = new JCheckBox("This is the Check
Box"); frame.add(chk);
frame.setSize(400, 400);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);
}

}

4)JRadioButton

Constructor Summary

JRadioButton()

Creates an initially unselected radio button with no set text.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

56 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JRadioButton(Action a)
Creates a radiobutton where properties are taken from the Action supplied.

JRadioButton(Icon icon)

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

57 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Creates an initially unselected radio button with the specified image but no text.

JRadioButton(Icon icon, boolean selected)

Creates a radio button with the specified image and selection state, but no text.

JRadioButton(String text)

Creates an unselected radio button with the specified text.

JRadioButton(String text, boolean selected)

Creates a radio button with the specified text and selection state.

JRadioButton(String text, Icon icon)

Creates a radio button that has the specified text and image, and that is initially unselected.

JRadioButton(String text, Icon icon, boolean selected)

Creates a radio button that has the specified text, image, and selection state.

Radio buttons must be configured into a group.only one of the buttons in

that group can be selected at any time.

The button group class is instantaiated to create a button group.

Element are then added to the button group via the following. method

void add(AbstractButton ab)

here ,ab is a referenceto the button to be added to the group.

how to create a radio button in java swing. Radio Button is like check box.
Differences between check box and radio button are as follows:

1. Check Boxes are separated from one to another where Radio Buttons are the different-

different button like check box from a same ButtonGroup.
2. You can checks multiple check boxes at once but this can never done in the case of radio

button. You can select only one radio button at once from a group of the radio button.
3. You can check or uncheck the check box but you can on check the radio button by clicking

it once.

Here, you will see the JRadioButton component creation procedure in java with the help of
this program. This example provides two radio buttons same ButtonGroup. These radio
buttons represent the option for choosing male or female. Following is the image for the result
of the given program:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

58 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The creation of JRadioButton are completed by the following methods:

ButtonGroup:
This is the class of the javax.swing.*; package, which is used to create a group of radio buttons
from which you can select only one option from that group of the radio buttons. This is class is
used by creating a instance of if using it's constructor. Radio Buttons are added to the specified
group using the add(JRadioButton) method of the ButtonGroup class.

JRadioButton:
This is the class has been used to create a single radio button for the application.

setSelected():
This method sets the value of the radio button. This method takes a boolean value either true or
false. If you pass true value then the radio button will be selected otherwise the radio button is
not selected.

Here is the code of program:

import javax.swing.*;
import java.awt.*;

public class CreateRadioButton
{

public CreateRadioButton()
{
JRadioButton Male,Female;
JFrame frame = new JFrame("Creating a JRadioButton
Component"); JPanel panel = new JPanel();
ButtonGroup buttonGroup = new ButtonGroup();

Male = new JRadioButton("Male");

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

59 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

buttonGroup.add(Male);
panel.add(Male);
Female = new JRadioButton("Female");

buttonGroup.add(Female);

panel.add(Female);

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

60 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Male.setSelected(true);
frame.add(panel);
frame.setSize(400,400);
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
public static void main(String[] args)
{
CreateRadioButton r = new CreateRadioButton();

}

}

5)JCombo Boxes

Swing provides a combo box (a combination of a text field and a drop-down list)
through the JComboBox class, which extends JComponent. A combo box
normally displays one entry. However, it can also display a drop-down list that allows
a user to select a different entry.

Swing provides a combo box (a combination of a text field and a drop-down list) through
the JComboBox class, which extends JComponent. A combo box normally displays
one entry. However, it can also display a drop-down list that allows a user to select a
different entry. You can also type your selection into the text field. Two of
JComboBox’s constructors are shown here:

JComboBox()
JComboBox(Vector v)
Here, v is a vector that initializes the combo box.
Items are added to the list of choices via the addItem() method, whose signature
is shown here:

void addItem(Object obj)
Here, obj is the object to be added to the combo box

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

61 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Method and Constructor

JComboBox()

JComboBox(ComboBoxModel)
JComboBox(Object[])

JComboBox(Vector)

void addItem(Object)

void insertItemAt(Object, int)

Purpose

Create a combo box with the specified items in its

menu. A combo box created with the default

constructor has no items in the menu initially. Each

of the other constructors initializes the menu from

its argument: a model object, an array of objects, or

a Vector of objects.

Add or insert the specified object into the combo

box's menu. The insert method places the specified

object at the specified index, thus inserting it before

the object currently at that index. These methods

require that the combo box's data model be an

instance ofMutableComboBoxModel.

Object getItemAt(int)
Get an item from the combo box's menu.

Object getSelectedItem()

void removeAllItems() Remove one or more items from the combo box's

void removeItemAt(int) menu. These methods require that the combo box's

void removeItem(Object) data model be an instance ofMutableComboBoxModel.

int getItemCount() Get the number of items in the combo box's menu

Add an action listener to the combo box. The

listener'sactionPerformedmethod is called when the
void

addActionListener(ActionListener) user selects an item from the combo box's menu or, in
an editable combo box, when the user presses
Enter.

 Add an item listener to the combo box. The

void listener'sitemStateChangedmethod is called when

addItemListener(ItemListener) the selection state of any of the combo box's items

 change.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

62 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

6)JList

A component that allows the user to select one or more objects from a list. A
separate model,ListModel, represents the contents of the list.

Constructor Summary

JList()

Constructs a JList with an empty model.

JList(ListModel dataModel)

Constructs a JList that displays the elements in the specified, non-null model.

JList(Object[] listData)

Constructs a JList that displays the elements in the specified array.

JList(Vector listData)

Constructs a JList that displays the elements in the specified Vector.

JList
public JList(ListModel dataModel)

Constructs a JList that displays the elements in the specified, non-null model.
All JListconstructors delegate to this one.

Parameters:

dataModel - the data model for this list

Throws:

IllegalArgumentException - if dataModel is null

JList
public JList(Object[] listData)

Constructs a JList that displays the elements in the specified array. This
constructor just delegates to the ListModel constructor.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

63 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Parameters:

listData - the array of Objects to be loaded into the data model

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

64 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JList
public JList(Vector listData)

Constructs a JList that displays the elements in the specified Vector. This
constructor just delegates to the ListModel constructor.

Parameters:

listData - the Vector to be loaded into the data model

JList
public JList()

Constructs a JList with an empty model.

Example:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

65 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

7)JTextField

JTextField is a lightweight component that allows the editing of a single line of text.

The Swing text field is encapsulated by the JTextComponent class, which extends
JComponent. It provides functionality that is common to Swing text components. One
of its subclasses is JTextField, which allows you to edit one line of text.

A text field is a basic text control that enables the user to type a small amount of text.

When the user indicates that text entry is complete (usually by pressing Enter), the text

field fires an action event. If you need to obtain more than one line of input from the

user, use a text area.

Constructor Summary

JTextField()

Constructs a new TextField.

JTextField(Document doc, String text, int columns)

Constructs a new JTextField that uses the given text storage model and the
given number of columns.

JTextField(int columns)

Constructs a new empty TextField with the specified number of columns.

JTextField(String text)

Constructs a new TextField initialized with the specified text.

JTextField(String text, int columns)

Constructs a new TextField initialized with the specified text and columns.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

66 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Method Purpose

void setEditable(boolean)
boolean isEditable()

(defined inJTextComponent)

void setColumns(int);

int getColumns()

void

setHorizontalAlignment(int);

int getHorizontalAlignment()

Sets or indicates whether the user can edit the text in the
text field.

Sets or obtains the number of columns displayed by

the text field. This is really just a hint for computing the

field's preferred width.

Sets or obtains how the text is aligned horizontally
within its area. You can

useJTextField.LEADING,JTextField.CENTER,

andJTextField.TRAILING for arguments.

8)JTextArea

A JTextArea is a multi-line area that displays plain text. It is intended to be a lightweight
component that provides source compatibility with the java.awt.TextArea class where it
can reasonably do so.

Constructor Summary

JTextArea()

Constructs a new TextArea.

JTextArea(Document doc)

Constructs a new JTextArea with the given document model, and defaults for
all of the other arguments (null, 0, 0).

JTextArea(Document doc, String text, int rows, int columns)

Constructs a new JTextArea with the specified number of rows and columns,
and the given model.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

67 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JTextArea(int rows, int columns)

Constructs a new empty TextArea with the specified number of rows and

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

68 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

columns.

JTextArea(String text)

Constructs a new TextArea with the specified text displayed.

JTextArea(String text, int rows, int columns)

Constructs a new TextArea with the specified text and number of rows
and columns.

public JTextArea()

Constructs a new TextArea. A default model is set, the initial string is null, and
rows/columns are set to 0.

JTextArea
public JTextArea(String text)

Constructs a new TextArea with the specified text displayed. A default model
is created and rows/columns are set to 0.

Parameters:

text - the text to be displayed, or null

JTextArea

public JTextArea(int rows, int

columns)
Constructs a new empty TextArea with the specified number of rows and
columns. A default model is created, and the initial string is null.

Parameters:

rows - the number of rows >= 0

columns - the number of columns >= 0

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

69 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Throws:

IllegalArgumentException - if the rows or columns arguments are negative.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

70 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

9)Menus

A menu provides a space-saving way to let the user choose one of several options.

a menu usually appears either in a menu bar or as a popup menu. A menu bar contains

one or more menus and has a customary, platform-dependent location — usually along

the top of a window. A popup menu is a menu that is invisible until the user makes a

platform-specific mouse action, such as pressing the right mouse button, over a popup-

enabled component. The popup menu then appears under the cursor.

The Menu Component Hierarchy

Here is a picture of the inheritance hierarchy for the menu-related classes:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

71 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Classes involved:

JMenuBar() Creates a menu bar.

JMenu() Creates a menu. The string specifies the text to display for the

JMenu(String) menu. TheAction specifies the text and other properties of

JMenu(Action) the menu

JMenuItem() Creates a JMenuItem with no set text or icon.

JCheckBoxMenuItem()
 Creates an initially unselected check box menu item with no

set text or icon.

JRadioButtonMenuItem() Creates a JRadioButtonMenuItem with no set text or icon

JMenuBar:

An implementation of a menu bar. You add JMenu objects to the menu bar to construct a
menu. When the user selects a JMenu object, its associated JPopupMenu is displayed,
allowing the user to select one of the JMenuItems on it.

.

JMenu:

An implementation of a menu -- a popup window containing JMenuItems that is
displayed when the user selects an item on the JMenuBar. In addition to JMenuItems,
a JMenu can also containJSeparators.

JCheckBoxMenuItem :

A menu item that can be selected or deselected. If selected, the menu item typically
appears with a checkmark next to it. If unselected or deselected, the menu item
appears without a checkmark. Like a regular menu item, a check box menu item can
have either text or a graphic icon associated with it, or both.

Mr.Arvind Yadav +91 – 829 1020

333 arvind@objectzoom.com

72 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

JRadioButtonMenuItem:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

73 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

An implementation of a radio button menu item. A JRadioButtonMenuItem is a menu
item that is part of a group of menu items in which only one item in the group can be
selected. The selected item displays its selected state. Selecting it causes any other
selected item to switch to the unselected state. To control the selected state of a group
of radio button menu items, use a ButtonGroup object.

Menu bar contains a collection of menus. Each menu can have multiple menu items these are
called submenu. Similarly, all menus have multiples menu items. The Separator divides the menu
items in a separate groups like same types of menu Items are divided into a individual parts. For
pictorial representation, the image for the result of the given program is given below:

This program shows how to create menu bar, menus, submenus and Separators. Here, all
items shows on a frame with the help of following methods and APIs:

JMenuBar:
This is the class which constructs a menu bar that contains several menus.

JMenu(String):
This is the constructor of JMenu class. This constructor constructs the new menu. It takes
the string type value which is the name label for the menu.

JMenuItem(String):
This is the constructor of JMenuItem class which constructs new menu items for the specific
menu. It takes string types value which is the label for the menu item.

JSeparator():
This is the constructor of JSeparator class which adds an extra line between menu items.
This line, only separates the menu items.

setJMenuBar():
This method is used to set the menu bar to the specified frame. It takes the object of the
JMenuBar class.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

74 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

EXAMPLE:

import javax.swing.*;

public class SwingMenu

{

public SwingMenu()

{

JFrame frame = new JFrame("MenuBar Menu MenuItm & seprator");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); JMenuBar

menubar = new JMenuBar();

JMenu filemenu = new JMenu("File");

filemenu.add(new JSeparator());

JMenu editmenu = new JMenu("Edit");

editmenu.add(new JSeparator());

JMenuItem fileItem1 = new JMenuItem("New");

JMenuItem fileItem2 = new JMenuItem("Open");

JMenuItem fileItem3 = new JMenuItem("Close");

fileItem3.add(new JSeparator());

JMenuItem fileItem4 = new JMenuItem("Save");

JMenuItem editItem1 = new JMenuItem("Cut");

JMenuItem editItem2 = new JMenuItem("Copy");

editItem2.add(new JSeparator());

JMenuItem editItem3 = new JMenuItem("Paste");

JMenuItem editItem4 = new

JMenuItem("Insert"); filemenu.add(fileItem1);

filemenu.add(fileItem2);

filemenu.add(fileItem3);

filemenu.add(fileItem4);

editmenu.add(editItem1);

editmenu.add(editItem2);

editmenu.add(editItem3);

editmenu.add(editItem4);

menubar.add(filemenu);
menubar.add(editmenu);

frame.setJMenuBar(menubar);

frame.setSize(400,400);

frame.setVisible(true);

Public static void main (String [] args)
{

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

75 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

SwingMenu s = new SwingMenu();
}

}
}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

76 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

10)JTables

The JTable is used to display and edit regular two-dimensional tables of cells

A table is a component that displays rows and columns of data. You can drag the
cursor on column boundaries to resize columns. You can also drag a column to a
new position. Tables are implemented by the JTable class, which extends
JComponent. One of its constructors is shown here:

JTable(Object data[][], Object colHeads[])

Here, data is a two-dimensional array of the information to be presented, and colHeads
is a one-dimensional array with the column headings.

Here are the steps for using a table in an applet:
1. Create a JTable object.
2. Create a JScrollPane object. (The arguments to the constructor specify the

table and the policies for vertical and horizontal scroll bars.)
3. Add the table to the scroll pane.
4. Add the scroll pane to the content pane of the applet

EXAMPLE:

import javax.swing.*;
import java.awt.*;

public class JTableComponent
{

public JTableComponent()
{
JFrame frame = new JFrame("Creating
JTable Component Example!"); JPanel
panel = new JPanel();
String data[][] = {{"vinod","BCA","A"},{"Raju","MCA","b"},
{"Ranjan","MBA","c"},{"Rinku","BCA","d"}};

String col[] = {"Name","Course","Grade"};
JTable table = new JTable(data,col);
panel.add(table,BorderLayout.CENTER);

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

77 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

frame.add(panel);
frame.setSize(300,200);
frame.setVisible(true);

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

78 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
public static void main(String[] args)
{

new JTableComponent();
}

}
}

11) Trees
A tree is a component that presents a hierarchical view of data. A user has the ability to
expand or collapse individual subtrees in this display. Trees are implemented in Swing
by the JTree class, which extends JComponent. Some of its constructors are shown
here:
JTree(Hashtable ht)
JTree(Object obj[])
JTree(TreeNode tn)
JTree(Vector v)

The first form creates a tree in which each element of the hash table ht is a child node.
Each element of the array obj is a child node in the second form. The tree node tn is the
root of the tree in the third form. Finally, the last form uses the elements of vector v as
child nodes.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

79 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

A JTree object generates events when a node is expanded or collapsed. The
addTreeExpansionListener() and removeTreeExpansionListener() methods allow
listeners to register and unregister for these notifications. The signatures of these
methods are shown here:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

80 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

void addTreeExpansionListener(TreeExpansionListener tel) void
removeTreeExpansionListener(TreeExpansionListener tel)

Here, tel is the listener object.

The getPathForLocation() method is used to translate a mouse click on a
specific point of the tree to a tree path. Its signature is shown here:

TreePath getPathForLocation(int x, int y)

Here, x and y are the coordinates at which the mouse is clicked. The return value is a
TreePath object that encapsulates information about the tree node that was selected
by the user.

The TreePath class encapsulates information about a path to a particular node in a
tree. It provides several constructors and methods. In this book, only the toString()
method is used. It returns a string equivalent of the tree path.

The TreeNode interface declares methods that obtain information about a tree
node. For example, it is possible to obtain a reference to the parent node or an
enumeration of the child nodes. The MutableTreeNode interface extends TreeNode.
It declares methods that can insert and remove child nodes or change the parent node.

The DefaultMutableTreeNode class implements the MutableTreeNode interface.
It represents a node in a tree. One of its constructors is shown here:

DefaultMutableTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new tree node doesn’t have
a parent or children.

To create a hierarchy of tree nodes, the add() method of DefaultMutableTreeNode
can be used. Its signature is shown here:

void add(MutableTreeNode child)

Here, child is a mutable tree node that is to be added as a child to the current node.

Tree expansion events are described by the class TreeExpansionEvent in the
javax.swing.event package. The getPath() method of this class returns a TreePath
object that describes the path to the changed node. Its signature is shown here:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

81 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

TreePath getPath()

The TreeExpansionListener interface provides the following two methods:

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

82 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

void treeCollapsed(TreeExpansionEvent tee)
void treeExpanded(TreeExpansionEvent tee)

Here, tee is the tree expansion event. The first method is called when a subtree is
hidden, and the second method is called when a subtree becomes visible.

EXAMPLE:

import javax.swing.*;
import javax.swing.tree.*;

public class TreeComponent
{
public static void main(String[] args)
{

JFrame frame = new JFrame("Creating a JTree Component!");

DefaultMutableTreeNode parent = new DefaultMutableTreeNode("Color", true);

DefaultMutableTreeNode black = new DefaultMutableTreeNode("Black");

DefaultMutableTreeNode blue = new DefaultMutableTreeNode("Blue");

DefaultMutableTreeNode nBlue = new DefaultMutableTreeNode("Navy Blue");

DefaultMutableTreeNode dBlue = new DefaultMutableTreeNode("Dark Blue");

DefaultMutableTreeNode green = new DefaultMutableTreeNode("Green");

DefaultMutableTreeNode white = new DefaultMutableTreeNode("White");

parent.add(black);
parent.add(blue);
blue.add(nBlue);

blue.add(dBlue);
parent.add(green);
parent.add(white);

JTree tree = new JTree(parent);
frame.add(tree);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setUndecorated(true);

frame.getRootPane().setWindowDecorationStyle(JRootPane.PLAIN_DIALOG);

frame.setSize(200,200);
frame.setVisible(true);

}
}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

83 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

12)JProgressBar

A component that visually displays the progress of some task. As the task progresses
towards completion, the progress bar displays the task's percentage of completion.
This percentage is typically represented visually by a rectangle which starts out empty
and gradually becomes filled in as the task progresses. In addition, the progress bar
can display a textual representation of this percentage.

To indicate that a task of unknown length is executing, you can put a progress bar into
indeterminate mode. While the bar is in indeterminate mode, it animates constantly to
show that work is occurring. As soon as you can determine the task's length and
amount of progress, you should update the progress bar's value and switch it back to
determinate mode.

JProgressBar uses a BoundedRangeModel as its data model, with the value
property representing the "current" state of the task, and the minimum and maximum
properties representing the beginning and end points, respectively.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

84 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Constructor Purpose

 Create a horizontal progress bar. The no-

 argument constructor initializes the progress bar

JProgressBar() with a minimum and initial value of 0 and a

JProgressBar(int, int) maximum of 100. The constructor with two

 integer arguments specifies the minimum and

 maximum values.

 Create a progress bar with the specified

 orientation, which can be

JProgressBar(int) eitherJProgressBar.HORIZONTALorJProgressBar.V

JProgressBar(int, int, int) ERTICAL. The optional second and third

 arguments specify minimum and maximum

 values.

JProgressBar(BoundedRangeModel)

 Create a horizontal progress bar with the

 specified range model.

Method

void setValue(int)
int getValue()

void setMinimum(int)
int getMinimum()

void setMaximum(int)
int getMaximum()

void setOrientation(int) int getOrientation()

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

85 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

P
u
r
p
o
s
e

Set or get the

current value of

the progress bar.

The value is

constrained by the

minimum and

maximum values.

Set or get the
minimum value of the
progress bar.

Set or get the
maximum value of the
progress bar.

Set or get
whether the
progress bar is
vertical or
horizontal.
Acceptable
values

are
JProgressBar.VERTICAL

orJProgressBar.HORIZONTAL.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

86 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

EXAMPLE:

JProgressBar:
This is the class which creates the progress bar using it's constructor JProgressBar() to show
the status of your process completion. The constructor JProgressBar() takes two argument as
parameter in which, first is the initial value of the progress bar which is shown in the starting
and another argument is the counter value by which the value of the progress bar is incremented.
Here, the value of the progress bar is incremented by 20.

setStringPainted(boolean):
This is the method of the JProgressBar class which shows the complete process in percent on
the progress bar. It takes a boolean value as a parameter. If you pass the true then the value will
be seen on the progress bar otherwise not seen.

setValue():

This is the method of the JProgressBar class which sets the value to the progress bar.

Timer():
This the constructor of the Timer class which starts the timer for timing. This constructor takes
two argument as parameter first is the interval (in milliseconds) of the timer and second one is
the listener object. Time is started using the start() method of the Timer class.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

87 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Here is the code of the program:

import java.awt.*;

import javax.swing.*;

public class SwingProgressBar{

int interval = 1000;

int i; JLabel
label;

JProgressBar pb;

Timer timer;

JButton button;

public SwingProgressBar()
{

JFrame frame = new JFrame("Swing Progress

Bar"); button = new JButton("Start");

button.addActionListener(new ButtonListener());

pb = new JProgressBar(0, 20);

pb.setValue(0);

pb.setStringPainted(true);

label = new JLabel("Arvind soft infotech");

JPanel panel = new JPanel();

panel.add(button);

panel.add(pb);

JPanel panel1 = new JPanel();

panel1.setLayout(new BorderLayout());

panel1.add(panel, BorderLayout.NORTH);

panel1.add(label, BorderLayout.CENTER);
panel1.setBorder(BorderFactory.createEmptyBorder(20, 20, 2

0, 20));
frame.setContentPane(panel1);
frame.pack();

frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Create a timer.

timer = new Timer(interval, new ActionListener() {

public void actionPerformed(ActionEvent evt) {

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

88 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

if (i == 20){

Toolkit.getDefaultToolkit().beep();

timer.stop();

button.setEnabled(true);

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

89 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

pb.setValue(0);

String str = "Downloading completed." ;
label.setText(str);

}

i = i + 1;

pb.setValue(i);
}

});
}

class ButtonListener implements ActionListener {

public void actionPerformed(ActionEvent ae) {
button.setEnabled(false);

i = 0;

String str = "Downloading is in
process”; label.setText(str);

timer.start();
}

}

public static void main(String[] args) {

SwingProgressBar spb = new SwingProgressBar();
}

}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

90 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

4

Layout Manager

A layout manager is an object that implements the LayoutManager interface and
determines the size and position of the components within a container. Although
components can provide size and alignment hints, a container's layout manager has the
final say on the size and position of the components within the container.
a layout manager automatically arranges your controls within a window

Each Container object has a layout manager associated with it. A layout manager
is an instance of any class that implements the LayoutManager interface. The layout
manager is set by the setLayout() method. If no call to setLayout() is made, then the
default layout manager is used. Whenever a container is resized (or sized for the first
time), the layout manager is used to position each of the components within it.
The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager. If you wish to disable
the layout manager and position components manually, pass null for layoutObj. If you
do this, you will need to determine the shape and position of each component
manually, using the setBounds() method defined by Component. Normally, you will
want to use a layout manager.

1)FlowLayout

The FlowLayout class provides a very simple layout manager that is used, by default, by
the JPanel objects

The FlowLayout class puts components in a row, sized at their preferred size. If the

horizontal space in the container is too small to put all the components in one row,

theFlowLayout class uses multiple rows. If the container is wider than necessary for a

row of components, the row is, by default, centered horizontally within the

container. To specify that the row is to aligned either to the left or right, use

a FlowLayout constructor that takes an alignment argument. Another constructor of

the FlowLayout class specifies how much vertical or horizontal padding is put around

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

91 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

the components.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

92 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Constructor

FlowLayout()

FlowLayout(intalign)

FlowLayout

(int align, int
hgap, intvgap)

Purpose

Constructs a new FlowLayout object with a centered alignment
and horizontal and vertical gaps with the default size of 5
pixels.

Creates a new flow layout manager with the indicated
alignment and horizontal and vertical gaps with the default
size of 5 pixels. The alignment argument can
beFlowLayout.LEADING,FlowLayout.CENTER,
orFlowLayout.TRAILING. When theFlowLayout object controls a

container with a left-to right component orientation (the
default), the LEADINGvalue specifies the components to be left-
aligned and the TRAILING value specifies the components to be
right-aligned.

Creates a new flow layout manager with the indicated
alignment and the indicated horizontal and vertical gaps.
The hgap and vgap arguments specify the number of pixels to
put between components.

2)BorderLayout

A border layout lays out a container, arranging and resizing its components to fit in five
regions: north, south, east, west, and center. Each region may contain no more than one
component, and is identified by a corresponding constant: NORTH, SOUTH, EAST, WEST,

and CENTER. When adding a component to a container with a border layout, use one of
these five constants, for example:

Panel p = new Panel();

p.setLayout(new BorderLayout());
p.add(new Button("Okay"), BorderLayout.SOUTH);

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

93 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The components are laid out according to their preferred sizes and the constraints of

the container's size. The NORTH and SOUTH components may be stretched horizontally;

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

94 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

the EAST and WESTcomponents may be stretched vertically; the CENTER component may
stretch both horizontally and vertically to fill any space left over.

EXAMPLE:

import java.awt.*;
import java.applet.Applet;

public class buttonDir extends Applet
{ public void init() {
setLayout(new BorderLayout());

add(new Button("North"), BorderLayout.NORTH);

add(new Button("South"), BorderLayout.SOUTH);

add(new Button("East"), BorderLayout.EAST);

add(new Button("West"), BorderLayout.WEST);

add(new Button("Center"), BorderLayout.CENTER);
}

}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

95 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

3)GridBagLayout

The GridLayout class is a layout manager that lays out a container's components in a

rectangular grid. The container is divided into equal-sized rectangles, and one

component is placed in each rectangle.

For example, the following is an applet that lays out six buttons into three rows and
two columns:

import java.awt.*;
import java.applet.Applet;

public class ButtonGrid extends Applet

{ public void init()
{

setLayout(new GridLayout(3,2));
add(new Button("1"));

add(new Button("2"));

add(new Button("3"));

add(new Button("4"));

add(new Button("5"));

add(new Button("6"));
}

}

If the container's ComponentOrientation property is horizontal and left-to-right, the above
example produces the output shown in Figure 1. If the

container's ComponentOrientation property is horizontal and right-to-left, the example
produces the output shown in Figure 2.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

96 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Figure 1: Horizontal, Left-to-Right Figure 2: Horizontal, Right-to-Left

When both the number of rows and the number of columns have been set to non-zero
values, either by a constructor or by the setRows and setColumns methods, the number of
columns specified is ignored. Instead, the number of columns is determined from the
specified number or rows and the total number of components in the layout. So, for
example, if three rows and two columns have been specified and nine components are
added to the layout, they will be displayed as three rows of three columns. Specifying
the number of columns affects the layout only when the number of rows is set to zero.

Constructor Purpose

 Creates a grid layout with the specified number of rows

GridLayout(introws,
 and columns. All components in the layout are given

equal size. One, but not both, of rowsand cols can be zero,

intcols)

 which means that any number of objects can be placed in

 a row or in a column.

 Creates a grid layout with the specified number of rows

GridLayout(introws, and columns. In addition, the horizontal and vertical gaps

intcols, inthgap, are set to the specified values. Horizontal gaps are places

intvgap) between each of columns. Vertical gaps are placed

 between each of the rows.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

97 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

4)GridBagLayout

The GridBagLayout class is a flexible layout manager that aligns components vertically
and horizontally, without requiring that the components be of the same size.

Each GridBagLayout object maintains a dynamic, rectangular grid of cells, with each
component occupying one or more cells, called its display area.

Each component managed by a GridBagLayout is associated with an instance
ofGridBagConstraints. The constraints object specifies where a component's display area
should be located on the grid and how the component should be positioned within its
display area. In addition to its constraints object, the GridBagLayout also considers each
component's minimum and preferred sizes in order to determine a component's size.

To use a grid bag layout effectively, you must customize one or more of

the GridBagConstraintsobjects that are associated with its components. You customize
a GridBagConstraints object by setting one or more of its instance variables:

To use a grid bag layout effectively, you must customize one or more of

the GridBagConstraintsobjects that are associated with its components. You customize
a GridBagConstraints object by setting one or more of its instance variables:

GridBagConstraints.gridx, GridBagConstraints.gridy

Specifies the cell containing the leading corner of the component's display area,
where the cell at the origin of the grid has address gridx = 0, gridy = 0. For
horizontal left-to-right layout, a component's leading corner is its upper left. For
horizontal right-to-left layout, a component's leading corner is its upper right.
Use GridBagConstraints.RELATIVE (the default value) to specify that the
component be placed immediately following (along the x axis for gridx or the y
axis for gridy) the component that was added to the container just before this
component was added.

GridBagConstraints.gridwidth, GridBagConstraints.gridheight

Specifies the number of cells in a row (for gridwidth) or column (for gridheight)
in the component's display area. The default value is 1.
Use GridBagConstraints.REMAINDER to specify that the component's display area
will be from gridx to the last cell in the row (forgridwidth) or from gridy to the
last cell in the column (for gridheight). UseGridBagConstraints.RELATIVE to

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

98 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

specify that the component's display area will be fromgridx to the next to the last
cell in its row (for gridwidth or from gridy to the next to the last cell in its column
(for gridheight).

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

99 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

GridBagConstraints.fill

Used when the component's display area is larger than the component's requested
size to determine whether (and how) to resize the component. Possible values
areGridBagConstraints.NONE (the default), GridBagConstraints.HORIZONTAL (make

the component wide enough to fill its display area horizontally, but don't change
its height),GridBagConstraints.VERTICAL (make the component tall enough to fill
its display area vertically, but don't change its width),
and GridBagConstraints.BOTH (make the component fill its display area entirely).

GridBagConstraints.ipadx, GridBagConstraints.ipady

Specifies the component's internal padding within the layout, how much to add to
the minimum size of the component. The width of the component will be at least
its minimum width plusipadx pixels. Similarly, the height of the component will
be at least the minimum height plusipady pixels.

GridBagConstraints.insets

Specifies the component's external padding, the minimum amount of
space between the component and the edges of its display area.

GridBagConstraints.anchor

Used when the component is smaller than its display area to determine where
(within the display area) to place the component. There are two kinds of
possible values: relative and absolute. Relative values are interpreted relative to
the container's ComponentOrientationproperty while absolute values are not.
Valid values are:

 Absolute Values Relative Values

 GridBagConstraints.NORTH
 GridBagConstraints.PAGE_START

 GridBagConstraints.SOUTH

 GridBagConstraints.PAGE_END

 GridBagConstraints.WEST

 GridBagConstraints.LINE_START

 GridBagConstraints.EAST

 GridBagConstraints.LINE_END

 GridBagConstraints.NORTHWEST

 GridBagConstraints.FIRST_LINE_START

 GridBagConstraints.NORTHEAST

 GridBagConstraints.FIRST_LINE_END

 GridBagConstraints.SOUTHWEST

 GridBagConstraints.LAST_LINE_START

 GridBagConstraints.SOUTHEAST

 GridBagConstraints.LAST_LINE_END

 GridBagConstraints.CENTER (the default)

GridBagConstraints.weightx, GridBagConstraints.weighty

Used to determine how to distribute space, which is important for specifying
resizing behavior. Unless you specify a weight for at least one component in a
row (weightx) and column (weighty), all the components clump together in the
center of their container. This is because when the weight is zero (the default),
the GridBagLayout object puts any extra space between its grid of cells and the

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

100 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

edges of the container.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

101 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The following figures show ten components (all buttons) managed by a grid bag layout.
Figure 1 shows the layout for a horizontal, left-to-right container and Figure 2 shows
the layout for a horizontal, right-to-left container.

Figure 1: Horizontal, Left-to-Right Figure 2: Horizontal, Right-to-Left

Each of the ten components has the fill field of its
associated GridBagConstraints

object set

toGridBagConstraints.BOTH. In addition, the
components have the following non-default constraints:

 Button1, Button2, Button3:

 Button4: weightx = 1.0, gridwidth = GridBagConstraints.REMAINDER
 Button5: gridwidth = GridBagConstraints.REMAINDER

 Button6: gridwidth = GridBagConstraints.RELATIVE

 Button7: gridwidth = GridBagConstraints.REMAINDER
 Button8: gridheight = 2, weighty = 1.0
 Button9, Button 10: gridwidth = GridBagConstraints.REMAINDER

Here is the code that implements the example shown above:

import java.awt.*;
import java.util.*;
import java.applet.Applet;

public class GridBagEx1 extends Applet {

protected void makebutton(String name,

GridBagLayout gridbag,

weightx = 1.0

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

102 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

GridBagConstraints c) {

Button button = new Button(name);
gridbag.setConstraints(button, c);
add(button);

}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

103 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

public void init() {

GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints c = new GridBagConstraints();

setFont(new Font("SansSerif", Font.PLAIN, 14));
setLayout(gridbag);

c.fill = GridBagConstraints.BOTH;

c.weightx = 1.0;

makebutton("Button1", gridbag, c);

makebutton("Button2", gridbag, c);

makebutton("Button3", gridbag, c);

c.gridwidth = GridBagConstraints.REMAINDER; //end

row makebutton("Button4", gridbag, c);

c.weightx = 0.0; //reset to the default
makebutton("Button5", gridbag, c); //another row

c.gridwidth = GridBagConstraints.RELATIVE; //next-to-last in row
makebutton("Button6", gridbag, c);

c.gridwidth = GridBagConstraints.REMAINDER; //end

row makebutton("Button7", gridbag, c);

c.gridwidth = 1; //reset to the default
c.gridheight = 2;

c.weighty = 1.0;
makebutton("Button8", gridbag, c);

c.weighty = 0.0; //reset to the default

c.gridwidth = GridBagConstraints.REMAINDER; //end row
c.gridheight = 1; //reset to the default

makebutton("Button9", gridbag, c);
makebutton("Button10", gridbag, c);

setSize(300, 100);

}

public static void main(String args[]) {

Frame f = new Frame("GridBag Layout
Example"); GridBagEx1 ex1 = new GridBagEx1();

ex1.init();

f.add("Center",
ex1); f.pack();

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

104 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

f.setSize(f.getPreferredSize());
f.show();

}
}

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

105 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

5)CardLayout

A CardLayout object is a layout manager for a container. It treats each component in the
container as a card. Only one card is visible at a time, and the container acts as a stack
of cards. The first component added to a CardLayout object is the visible component
when the container is first displayed.

The ordering of cards is determined by the container's own internal ordering of its
component objects.CardLayout defines a set of methods that allow an application to flip
through these cards sequentially, or to show a specified card.
The addLayoutComponent(java.awt.Component, java.lang.Object) method can be used
to associate a string identifier with a given card for fast random access.

Method Purpose

first

(Containerparent)

next (Containerparent)

previous

(Containerparent)

Flips to the first card of the container.

Flips to the next card of the container. If the currently
visible card is the last one, this method flips to the first card
in the layout.

Flips to the previous card of the container. If the currently
visible card is the first one, this method flips to the last card in
the layout.

last (Containerparent)
Flips to the last card of the container.

show (Containerparent, Flips to the component that was added to this layout with the

Stringname) specified name, using the addLayoutComponent method.

6)BoxLayout

A layout manager that allows multiple components to be laid out either vertically or

horizontally. The components will not wrap so, for example, a vertical arrangement

of components will stay vertically arranged when the frame is resized.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

106 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Nesting multiple panels with different combinations of horizontal and vertical gives an effect similar to

GridBagLayout, without the complexity. The diagram shows two panels arranged horizontally, each of which contains

3 components arranged vertically.

The BoxLayout manager is constructed with an axis parameter that specifies the type of layout that will be done. There
are four choices:

X_AXIS - Components are laid out horizontally from left to right.

Y_AXIS - Components are laid out vertically from top to bottom.

The BoxLayout class puts components in a single row or column. It respects the
components' requested maximum sizes and also lets you align components

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

107 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

5

Event Handling

The user communicates with the programs by programming action like
Clicking on a button and this action result in generation of events. The event
are object that describe what has happened, the process of responding to an
event is known as event handling

Event Source:

The object which generated the event is known as event source .
E.g.: mouse click on a button component generate an ActionEvent with the
button as the source of the event .

Event Handler:
The method which receives the event, process the event and does
something on the event being generated is known as the Event Handler.The
Event Handler are the methods, which are within the Event Listeners in the
Event Delegation Model followed by java.

The Event class defines the list of events by programs and also provide the
constructors for constructing event but we does not need to use this
constructor as the event are internally generated by the java run time system
in response to user interface action .

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

108 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Implementing Listeners for Commonly Handled Events:

1) Action Listener:

Action listeners are probably the easiest — and most common — event handlers to
implement. You implement an action listener to define what should be done when an
user performs certain operation.

An action event occurs, whenever an action is performed by the user. Examples: When
the user clicks a button, chooses a menu item, presses Enter in a text field. The result is
that an actionPerformed message is sent to all action listeners that are registered on the
relevant component.

To write an Action Listener, follow the steps given below:

1. Declare an event handler class and specify that the class either implements an
ActionListener interface or extends a class that implements an
ActionListener interface. For example:

public class MyClass implements ActionListener {

2. Register an instance of the event handler class as a listener on one or more

components. For example:

someComponent.addActionListener(instanceOfMyClass);

3. Include code that implements the methods in listener interface. For example:

public void actionPerformed(ActionEvent e)
{

...//code that reacts to the action...
}

The ActionListener Interface

Method Purpose

actionPerformed(actionEvent) Called just after the user performs an action

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

109 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The ActionEvent Class

Method Purpose

String
getActionCommand()

int getModifiers()

Returns the string associated with this action. Most objects that
can fire action events support a method

called setActionCommand that lets you set this string.

Returns an integer representing the modifier keys the user was
pressing when the action event occurred. You can use

the ActionEvent-defined

constants SHIFT_MASK, CTRL_MASK, META_MASK, and ALT_MASK to

determine which keys were pressed. For example, if the user

Shift-selects a menu item, then the following expression is

nonzero:

actionEvent.getModifiers() & ActionEvent.SHIFT_MASK

Object getSource()

Returns the object that fired the event.

2)Component Listener

The Component listener is a listener interface for receiving component events. A
component is an object having a graphical representation that can be displayed on the
screen and that can interact with the user. Some of the examples of components are
the buttons, checkboxes, and scrollbars of a typical graphical user interface.

The class that is interested in processing a component event either implements this
interface and all the methods it contains, or extends the abstract ComponentAdapter
class overriding only the methods of interest. The listener object created from that class
is then registered with a component using the component's addComponentListener
method. When the component's size, location, or visibility changes, the relevant
method in the listener object is invoked, and the ComponentEvent is passed to it.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

110 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The ComponentListener Interface.

Method Purpose

componentHidden(ComponentEvent)

componentMoved(ComponentEvent)

componentResized(ComponentEvent)

componentShown(ComponentEvent)

Called after the listened-to component is hidden

as the result of thesetVisiblemethod being

called.

Called after the listened-to component moves,

relative to its container. For example, if a

window is moved, the window fires a

component-moved event, but the components it

contains do not.

Called after the listened-to component's size
(rectangular bounds) changes.

Called after the listened-to component becomes

visible as the result of thesetVisiblemethod

being called.

The ComponentEvent Class

Method Purpose

Component getComponent()
 Returns the component that fired the event. You can

use this instead of thegetSource method.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

111 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

3) Container Listener

Container events are fired by a Container just after a component is added to or

removed from the container. These events are for notification only — no container

listener need be present for components to be successfully added or removed.

The following example demonstrates container events. By clicking Add a

button or Remove a button, you can add buttons to or remove them from a panel at

the bottom of the window. Each time a button is added to or removed from the

panel, the panel fires a container event, and the panel's container listener is notified.

The listener displays descriptive messages in the text area at the top of the window.

The ContainerListener Interface

The corresponding adapter class is ContainerAdapter

Method Purpose

componentAdded(ContainerEvent)
 Called just after a component is added to the

listened-to container.

Called just after a component is removed from

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

112 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

componentRemoved(ContainerEvent) the listened-to container.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

113 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The ContainerEvent Class

Method Purpose

Component getChild()

Container getContainer()

Returns the component whose addition

or removal triggered this event.

Returns the container that fired this event.

You can use this instead of the getSourcemethod.

4) Focus Listener

Focus events are fired whenever a component gains or loses the keyboard focus. This
is true whether the change in focus occurs through the mouse, the keyboard, or
programmatically

The FocusListener Interface

The corresponding adapter class is FocusAdapter.

Method Purpose

focusGained(FocusEvent) Called just after the listened-to component gets the focus.

 focusLost(FocusEvent) Called just after the listened-to component loses the focus.

 The FocusEvent API

 Method Purpose

boolean isTemporary()

Component getComponent()

Returns the true value if a focus-lost or focus-gained
event is temporary.

Returns the component that fired the focus event.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

114 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

5)Internal Frame Listener

An InternalFrameListener is similar to aWindowListener. Like the window listener, the
internal frame listener listens for events that occur when the "window" has been
shown for the first time, disposed of, iconified, deiconified, activated, or deactivated.

The InternalFrameListener Interface

The corresponding adapter class isInternalFrameAdapter.

Method Purpose

internalFrameOpened

(InternalFrameEvent)

internalFrameClosing

(InternalFrameEvent)

internalFrameClosed

(InternalFrameEvent)

internalFrameIconified

(InternalFrameEvent)

internalFrameDeiconified

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

115 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Called just after the
listened-to internal
frame has been shown
for the first time.

Called in
response to a
user request that
the listened-to
internal frame be
closed. By

default,
JInternalFramehides the
window when the user
closes it. You can use

the
JInternalFramesetDefault

CloseOperationmetho

d to specify another
option, which must be

eitherDISPOSE_ON_CLOSE
orDO_NOTHING_ON_CLOSE
(bot

h defined in

WindowConstants, an

interface

thatJInternalFrameimple

ments). Or by

implementing

aninternalFrameClosingm

ethod in the internal

frame's listener, you can

add custom behavior

(such as bringing up

dialogs or saving data) to

internal frame closing.

Called just after the listened-to internal frame has
been disposed of.

Called just after the listened-to internal frame is
iconified or deiconified, respectively.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

116 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

(InternalFrameEvent)

internalFrameActivated

(InternalFrameEvent) Called just after the listened-to internal frame is

internalFrameDeactivated(Intern activated or deactivated, respectively.

alFrameEvent)

Each internal frame event method has a single parameter: an InternalFrameEvent object.

TheInternalFrameEvent class defines no generally useful methods. To get the internal frame

that fired the event, use the getSource method, which InternalFrameEventinherits
from java.util.EventObject.

6)Mouse Listener

Mouse events notify when the user uses the mouse (or similar input device) to interact
with a component. Mouse events occur when the cursor enters or exits a component's
onscreen area and when the user presses or releases one of the mouse buttons.

Tracking the cursor's motion involves significantly more system overhead than tracking
other mouse events. That is why mouse-motion events are separated into Mouse Motion
listener type

The MouseListener Interface

Method Purpose

mouseClicked(MouseEvent)
 Called just after the user clicks the listened-to

component.

mouseEntered(MouseEvent)

 Called just after the cursor enters the bounds of the

 listened-to component.

mouseExited(MouseEvent)
 Called just after the cursor exits the bounds of the

listened-to component.

mousePressed(MouseEvent) Called just after the user presses a mouse button
while the cursor is over the listened-to component.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

117 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

Called just after the user releases a mouse button after a
mouseReleased(MouseEvent)

 mouse press over the listened-to component.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

118 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The MouseMotionListener Interface

The corresponding adapter classes areMouseMotionAdapter and MouseAdapter.

Method Purpose

mouseDragged(MouseEvent)

mouseMoved(MouseEvent)

Called in response to the user moving the mouse while

holding a mouse button down. This event is fired by the

component that fired the most recent mouse-pressed

event, even if the cursor is no longer over that

component.

Called in response to the user moving the mouse with no

mouse buttons pressed. This event is fired by the

component that's currently under the cursor.

The MouseEvent Class

Method Purpose

int

getClickCount()

int getX()
int getY()

Point getPoint()

Returns the number of quick, consecutive clicks the user has made

(including this event). For example, returns 2 for a double click.

Return the (x,y) position at which the event occurred, relative to
the component that fired the event.

7)Window Listeners

When the appropriate listener has been registered on a window (such as

a frame or dialog), window events are fired just after the window activity or state has
occurred. A window is considered as a "focus owner", if this window receives
keyboard input.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

119 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The following window activities or states can precede a window event:

 Opening a window — Showing a window for the first time.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

120 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

 Closing a window — Removing the window from the screen.
 Iconifying a window — Reducing the window to an icon on the desktop.

 Deiconifying a window — Restoring the window to its original size.
 Focused window — The window which contains the "focus owner".

 Activated window (frame or dialog) — This window is either the
focused window, or owns the focused window.

 Deactivated window — This window has lost the focus. For more information
about focus, see theAWT Focus Subsystem specification.

 Maximizing the window — Increasing a window's size to the maximum allowable
size, either in the vertical direction, the horizontal direction, or both directions.

The WindowListener interface defines methods that handle most window events, such
as the events for opening and closing the window, activation and deactivation of the
window, and iconification and deiconification of the window.

The WindowListener Interface

Method Purpose

windowOpened(WindowEvent)

windowClosing(WindowEvent)

Called just after the listened-to window has been
shown for the first time.

Called in response to a user request for the

listened-to window to be closed. To actually close

the window, the listener should invoke the

window's disposeorsetVisible(false)method.

windowClosed(WindowEvent) Called just after the listened-to window has closed.

windowIconified(WindowEvent) Called just after the listened-to window is iconified

windowDeiconified(WindowEvent) or deiconified, respectively.

Called just after the listened-to window is activated
or deactivated, respectively. These methods are

not sent to windows that are not frames or dialogs.
windowActivated(WindowEvent) windowDeactivated(WindowEvent)

For this reason, we

prefer the

1.4windowGainedFocusandwindowLostFocusmethods

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

121 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

to determine when a window gains or loses the
focus.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

122 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

The WindowEvent Class

Method Purpose

Returns the window that fired the event. You can use
Window getWindow()

this instead of thegetSource method.

8) Key Listener

Key events indicate when the user is typing at the keyboard. Specifically, key events are

fired by the component with the keyboard focus when the user presses or releases

keyboard keys.

Notifications are sent about two basic kinds of key events:

 The typing of a Unicode character

 The pressing or releasing of a key on the keyboard

The first kind of event is called a key-typed event. The second kind is either a key-
pressed or key-released event.

In general, you react to only key-typed events unless you need to know when the user

presses keys that do not correspond to characters. For example, to know when the

user types a Unicode character — whether by pressing one key such as 'a' or by

pressing several keys in sequence — you handle key-typed events. On the other hand,

to know when the user presses the F1 key, or whether the user pressed the '3' key on

the number pad, you handle key-pressed events.

The KeyListener Interface

The corresponding adapter class is KeyAdapter.

Method Purpose

Called just after the user types a Unicode character into the
keyTyped(KeyEvent)

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

123 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

listened-to component.

keyPressed(KeyEvent) Called just after the user presses a key while the
listened-to component has the focus.

Mr.Arvind Yadav +91 – 829 1020 333 arvind@objectzoom.com

124 | P a g e h t t p : / / t r a i n i n g . o b j e c t z o o m . c o m

keyReleased(KeyEvent)

The KeyEvent Class

Called just after the user releases a key while the listened-to
component has the focus.

The KeyEvent class inherits many useful methods from theInputEvent class, such
as getModifiersEx, and a couple of useful methods from

the ComponentEvent andAWTEvent classes. See the InputEvent Class table in themouse
listener page for a complete list.

Method Purpose

int getKeyChar()

int getKeyCode()

Obtains the Unicode character associated with this
event. Only rely on this value for key-typed events.

Obtains the key code associated with this event. The

key code identifies the particular key on the

keyboard that the user pressed or released.

The KeyEvent class defines many key code constants

for commonly seen keys. For example, VK_Aspecifies

the key labeled A, andVK_ESCAPE specifies the Escape

key.

String getKeyText(int)

String getKeyModifiersText(int)

boolean isActionKey()

Return text descriptions of the event's key code
and modifier keys, respectively.

Returns true if the key firing the event is an action

key. Examples of action keys include Cut, Copy,

Paste, Page Up, Caps Lock, the arrow and function

keys. This information is valid only for key-pressed

and key-released events.

